Novel Route to Some Biologically Important Compounds Starting with a Common Chiral, Bicyclic, Fused Lactone: Enantioselective Synthesis of (-)-Boschnialactone and Two Antithrombotics

Yoshitsugu Arai, Saburo Kawanami and Toru Koizumi *
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01. Japan

Three biologically important compounds, (-)-boschnialactone and the antithrombotics (+)- and (-)-(5Z)-6-\{(1S,4R)-3-endo-(4-chlorophenylsulphonylamino)bicyclo[2.2.1]hept-5-en-2-endoand exo-yl\}hex-5-enoic acid have been synthesized starting from a common chiral lactone which is easily available via an asymmetric Diels--Alder reaction.

Chirally functionalised bicyclo[2.2.1]heptane derivatives have attracted a great deal of attention as starting materials in the synthesis of natural products ${ }^{1}$ as well as of pharmacological agents. ${ }^{2}$ For the construction of these systems in optically active form, (i) asymmetric Diels-Alder reactions with cyclopentadiene and congeners and (ii) enzymatic resolution of racemic derivatives of bicyclo[2.2.1]heptane have appeared to date. In particular, chiral tricyclic lactone 1 seemed to be a useful starting material whose utility has been demonstrated by its conversion to prostanoids ${ }^{3}$ and a prostaglandin precursor. ${ }^{4}$ Enantioselective preparation of $(+)-1$ by the action of pig liver esterase was first described in $1985 .{ }^{5}$ The resolution method using a chiral alkaloid as a catalyst has also been reported. ${ }^{6}$ In view of this synthetic interest, we ${ }^{7}$ reported an enantiodivergent route to lactone 1 based upon the asymmetric Diels-Alder reaction strategy. As an application of this methodology to the synthesis of biologically important compounds, we were intrigued by the synthesis of $(-)$-boschnialactone 2^{8} and the thromboxane/prostaglandin receptor antagonists ${ }^{9}(+)-3$ and $(-)-4$, starting with the chiral lactone 1 , and we now describe our observations in full detail.

Synthesis of (-)-Boschnialactone.-Boschnialactone 2 was isolated from Boschniakia rossica Hult. by Sakan et al..10 The absolute configuration was determined by chemical correlation. ${ }^{10}$ Its interesting biological properties such as its catattracting and insecticidal activities led to it receiving much attention from synthetic chemists. There are now several reported syntheses of $(\pm)-2 ;{ }^{11}$ however, no chiral synthesis has appeared to date. We undertook the enantioselective synthesis of (-)-2, the isomer with the natural configuration.
The methodology for the enantioselective synthesis of com-

Scheme 1 Reagents, conditions and yields: $\mathrm{i}, \mathrm{KOH}, \mathrm{MeOH}$-water; $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}(92 \%)$; ii, MOMCl, $\mathrm{Pr}_{2}{ }_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(89 \%)$; iii, LiAlH_{4}, THF (89%); iv, MCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(59 \%$); v, PCC, molecular sieves $4 \AA$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(72 \%$ from 5 c$)$; vi, $\mathrm{Al}-\mathrm{Hg}$, THF, $\mathrm{EtOH}(91 \%)$; vii, $h \nu(200 \mathrm{~W}$, low-pressure Hg lamp, quartz filter), $\mathrm{MeCN} ; \mathrm{HCl}$ (cat.); viii, Jones' reagent, acetone (64% from 9); ix, PPTS, Bu'OH $(86 \%$); x, toluene- p sulphonyl chloride, pyridine (93%); xi, NaI, $\mathrm{Zn}, 1,2$-dimethoxyethane (100%) ; xii, $\mathrm{H}_{2}, 5 \% \mathrm{Pt}$ on alumina, $\mathrm{Bu}^{\prime} \mathrm{OH}(85 \%)$
pound 2 is illustrated in Scheme 1. The construction of the framework was based upon photolytic cleavage of a bi-cyclo[2.2.1]heptan-5-one system. ${ }^{12}$ Following the literature method, ${ }^{13}$ the lactone 1 was transformed into the ester alcohol 5a by saponification followed by esterification. Owing to the instability of compound $\mathbf{5 a}$, which tends to cyclise readily back to lactone $\mathbf{1}$ even upon evaporation of its solutions, the hydroxy group in compound $\mathbf{5 a}$ was protected as the t-butyldiphenylsilyl

Table 1 Epimerisation of compound 20

Entry	Substrate ratio	Reagent, mol equiv.	Solvent	Temp. $\left(T /{ }^{\circ} \mathrm{C}\right)$	Time (t / h)	Yield (\%)	Product proportions ${ }^{a}$ $20: 21$
1	1.8:1	$\mathrm{NaOH}, 2$	MeOH -water	20	1		Decomposed
2	1.8:1	$\mathrm{K}_{2} \mathrm{CO}_{3}, 1.6$	THF-water	0	0.5		Unchanged
3	6:1	$\mathrm{K}_{2} \mathrm{CO}_{3}, 2$	THF-water	20	20	71	1:1.4
4	6:1	$\mathrm{Et}_{3} \mathrm{~N}, 2$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	20		Decomposed
5	6:1	Silica gel	Hexane-AcOEt	20	18	97	1:12

${ }^{a}$ Proportions were determined by integration of the two aldehydic signals in the ${ }^{1} \mathrm{H}$ NMR spectrum.
(TBDPS) ether $\mathbf{5 b}$. However, reduction of compound $\mathbf{5 b}$ with LiAlH_{4} produced not the corresponding alcohol $\mathbf{6 b}$ but a meso diol 6a. In turn, the reduction of the methoxymethyl (MOM) ether $5 \mathbf{c},[\alpha]_{\mathrm{D}}^{25}-3.8^{\circ}(c 1.02)$, obtained from lactone 1 by the usual method, produced the protected alcohol $6 \mathrm{c},[\alpha]_{\mathrm{D}}^{25}-0.93^{\circ}$ (c 0.51), $[\alpha]_{\mathrm{D}}^{25}-23.6^{\circ}$ (c 1.11 , acetone), in 89% yield. Exposure of compound $\mathbf{6 c}$ to 3-chloroperbenzoic acid (MCPBA) gave the tricyclic ether 7, m.p. $82-84^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}-30.2^{\circ}$ (c 1.69), in moderate yield. Further transformations were based on those developed by Vandewalle and co-workers ${ }^{11 c}$ for their racemic synthesis of compound 2. Pyridinium chlorochromate (PCC) oxidation ${ }^{14}$ and subsequent reductive cleavage of the ether group of the product 8 with aluminium amalgam gave hydroxy ketone $9,[\alpha]_{\mathrm{D}}^{25}-5.0^{\circ}$ (c 1.9), in 72% yield. A Norrish Type-I cleavage by photolysis of ketone 9 , followed by treatment of the resulting hemiacetal 10 with PCC, afforded the bicyclic lactone 11, m.p. $42-44^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}-17.3^{\circ}$ (c 2.1). Attempted deprotection of the MOM group in compound 11 with acid ${ }^{15}$ was unsatisfactory; however, treatment with pyridinium toluene- p-sulphonate (PPTS) and t-butyl alcohol under Monti conditions ${ }^{16}$ produced the alcohol 12 , m.p. $78-80^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-3.0^{\circ}(c 1.22)$, in good yield. The use of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} /$ alkanethiol was also effective for the deprotection. ${ }^{17}$ Tosylation of the alcohol 12 (to give ester 13) and subsequent treatment with $\mathrm{Zn}-\mathrm{NaI}^{18}$ led to didehydroboschnialactone 14 , m.p. $90-91^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-19.8^{\circ}(c 0.77)$. Hydrogenation of compound 14 over $\mathrm{Pd}-\mathrm{C}$ gave compound 2 , accompanied by a substantial amount of the stereoisomer, which could be assigned to be C-7 epimer $15^{11 e}$ as judged by NMR analysis of the crude product. The formation of epimer 15 can be explained by the isomerisation of the $C(5)-C(6)$ double bond to the $\mathrm{C}(6)-\mathrm{C}(7)$ position during the reduction. Similar results were observed in the reduction of bicyclic olefins. ${ }^{19} \mathrm{Ir}$ catalysed hydrogenation ${ }^{20}$ afforded the target compound 2 but in capricious yield. Finally, the use of $5 \% \mathrm{Pt}$ on alumina as the catalyst ${ }^{19}$ effected selective reduction to give $(-)$-boschnialactone 2 as an oil, $[\alpha]_{\mathrm{D}}^{25}-21.3^{\circ}(c 0.34)\left\{\right.$ lit., ${ }^{10}[\alpha]_{\mathrm{D}}^{21}-18.2^{\circ}(c$ $2.10)\}$, without contamination by any isomer. The spectroscopic data were in good agreement with those of an authentic sample by direct comparison.

Synthesis of Prostaglandin H_{2} Receptor Antagonists.Thromboxane $\mathrm{A}_{2}\left(\mathrm{TXA}_{2}\right)$ and prostaglandin $\mathrm{H}_{2}\left(\mathrm{PGH}_{2}\right)$ exhibit highly potent inhibition of blood platelet aggregation and of smooth muscle contraction. Since the discovery of TXA ${ }_{2}$ and its biosynthetic precursor PGH_{2}, numerous studies on the synthesis of its stable analogues as medicinally useful agents have been reported. A number of them possess 7 -oxabicyclo[2.2.1]and bicyclo[2.2.1]-heptane systems. Both compounds 3 and 4 were reported to be effective receptor antagonists by the Bayer groups. ${ }^{9}$ These syntheses, however, did not deal with any enantiomeric control. Hence, we were interested in the chiral synthesis of antithrombotics 3 and 4.

Ester $5 \mathbf{c}$ is also a starting material for this synthesis (Scheme 2). Careful saponification of compound 5 c with NaOH afforded the carboxylic acid 16. Transformation of the carboxy group in the acid 16 into the amino group was carried out by
the usual mixed-anhydride reaction sequence. Accordingly, treatment of compound 16 with ethyl chloroformate followed by successive addition of sodium azide produced the azido compound, which upon being heated in aq. HOAc gave the amino ether 17. Sulphonylation of the amine 17 with 4chlorobenzenesulphonyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$ gave the sulphonamide 18, m.p. $121-123^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}+17.8^{\circ}(c \quad 1)$. Ester 5c was thus converted into compound 18 , without the need to purify any of the intermediates such as 17 , in 64% yield. Deprotection of the MOM group in compound 18 led to the alcohol 19, m.p. $122-123^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+55.2^{\circ}$ (c 1.43), whose racemate has been reported as the intermediate in the synthesis of compounds $(\pm)-3$ and $(\pm)-4$. It was reported ${ }^{9}$ that alcohol (\pm)-19 was oxidised under Swern conditions to give an isomeric mixture of compounds $(\pm)-20$ and $(\pm)-21$ in the ratio $2: 5$, and the final mixtures obtained from the aldehydes contained nearly equal amounts of compounds $(+)-3$ and $(\pm)-4$. The lack of the stereocontrol in this synthesis prompted us to seek a procedure to prepare either aldehyde 20 or 21 in a highly stereoselective manner. It was found that PCC oxidation produced the aldehydes 20 and 21 in the ratio 6:1 in good yield. Pure aldehyde 20, m.p. $141-143^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}+24.2^{\circ}(c$ 1.07), could be obtained by one recrystallisation of the crude oxidation product. On the other hand, exposure of a 6:1 mixture of aldehydes 20 and 21 to silica gel resulted in the predominant formation of the aldehyde 21 (20:21 1:12). Pure aldehyde 21, m.p. $116^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}+39.9^{\circ}$ (c 0.93), was also obtained by recrystallisation from the mixture. Attempts at epimerisation of compound 20 by the use of base were unfruitful (Table 1). Following the method reported, ${ }^{9}$ cis-endo-aldehyde 20 was transformed into compound (+)-3, $[\alpha]_{\mathrm{D}}^{24}+100.8^{\circ}$ (c 1.73), as an oil, by a Wittig reaction with (4carboxybutyl)triphenylphosphonium bromide and dimsyl sodium; the Z-isomer 3 was contaminated by the E-isomer 22 ($Z: E 5.5: 1$). The ratio was determined by the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of the corresponding methyl esters. The desired Z-isomer 3 was separable from E-isomer 22 in an almost pure form (isomeric purity 93%) by recrystallisation of a mixture of the corresponding cyclohexylamine salts followed by acidic treatment of the resulting almost pure salt (m.p. $134-135{ }^{\circ} \mathrm{C}$). The use of other bases such as KOBu^{t} for the condensation of compound 20 resulted in predominant formation of the E-isomer 22, as shown in Table 2 . On the other hand, aldehyde 21 was treated with the phosphonium salt and KOBu^{t} as base to give predominantly the Z-isomer 4, accompanied by the E-isomer 23 , in 86% yield. The ratio of Z and E isomers could be estimated as $14: 1$ respectively, judged by the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of its methyl esters. The acid $4,[\alpha]_{\mathrm{D}}^{25}-40.5^{\circ}(c 0.98)$, was obtained in an almost pure form (isomeric purity 96%) by acidic treatment of the cyclohexyl amine salt (m.p. 113-115 ${ }^{\circ} \mathrm{C}$), in a similar manner to the procedure of the preparation of compound 3.

In summary, we have succeeded the chiral synthesis of (-)boschnialactone 2 and two antithrombotics starting with a common chiral, bicyclic, fused lactone.

Table 2 Results of the Wittig condensation of compound 20

Entry	Base ${ }^{\text {a }}$	Solvent	Temp. ($T /{ }^{\circ} \mathrm{C}$)	Time (t / h)	Yield (\%)	Product proportions ${ }^{b}$ $3: 22$
1	Bu'OK	THF	0	1	${ }^{c}$	1:13
2	Bu'OK	THF	$-78 \rightarrow 25$	1.7	~ 100	1:5.9
3	Bu'OK	Benzene	25	4	c	1:11
4	Dimsyl sodium	DMSO	50	5	90	5.5:1

${ }^{a} 5$ Mol equiv. of the phosphonium salt and 10 mol equiv. of the base were used. ${ }^{b}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ Yields were not determined. No starting material 20 was detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product.

$(+)-3$

(-)-4

23

Scheme 2 Reagents: i, NaOH -water, $\mathrm{THF} ; \mathrm{Et}_{3} \mathrm{~N}, \mathrm{ClCO}_{2} \mathrm{Et} ; \mathrm{NaN}_{3}$, water; HOAC -water; $\mathrm{Et}_{3} \mathrm{~N}, 4$-chlorobenzenesulphonyl chloride; ii, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, PhSH ; iii, PCC, NaOAc , molecular sieves $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ iv, NaH , DMSO, (4-carboxybutyl)triphenylphosphonium bromide; cyclohexylamine; H^{+}; $\mathrm{v}, \mathrm{Bu}^{\prime} \mathrm{OK}$, (4-carboxybutyl)triphenylphosphonium bromide, THF; cyclohexylamine; H^{+}

Experimental

M.p.s were determined with a Yanagimoto micro melting-point apparatus and are uncorrected. B.p.s for bulb-to-bulb distillation indicate bath temperature. IR spectra were recorded on a JASCO A-102 or a Perkin-Elmer 1600 spectrometer. NMR spectra were measured in CDCl_{3} with tetramethylsilane as internal standard on a JEOL PMX SI ($60 \mathrm{MHz}{ }^{1} \mathrm{H}$) or a JEOL GX-270 $\left(270 \mathrm{MHz}{ }^{1} \mathrm{H}\right)$ and a Varian XL-200 $\left(50.1 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ spectrometer. J-Values are in Hz . Mass spectra were recorded on a JEOL JMS-300 spectrometer. Optical rotations were recorded on a JASCO DIP-140 digital polarimeter and were taken in chloroform solution unless otherwise indicated. TLC
analyses were performed using Merck pre-coated silica 60F254 plates $(0.2 \mathrm{~mm})$. Column chromatography was carried out on Merck silica (70-230 mesh) or Nakarai Chemicals silica (70-230 mesh). Flash chromatography was carried out on Merck silica (230-400 mesh) or Nakarai Chemicals silica (230-400 mesh). Dry tetrahydrofuran (THF) was freshly distilled from sodium benzophenone ketyl prior to use. Dry methylene dichloride was distilled from phosphorus pentaoxide and stored with molecular sieves $4 \AA$. Organic extracts were dried over anhydrous magnesium sulphate.
(-)-Methyl (1R,4S)-3-endo-[(Methoxymethoxy)methyl]bi-
cyclo[2.2.1]hept-5-ene-2-endo-carboxylate $\mathbf{5 c}$.-To a solution of compound $5 \mathbf{a}^{5}(1.00 \mathrm{~g}, 5.49 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added diisopropylethylamine ($2.87 \mathrm{~cm}^{3}, 16.5 \mathrm{mmol}$) followed by chloromethyl methyl ether ($1.24 \mathrm{~cm}^{3}, 16.5 \mathrm{mmol}$). The solution was stirred at room temperature overnight before being poured onto cold, $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid $\left(15 \mathrm{~cm}^{3}\right)$, and the aq. layer was extracted with chloroform ($4 \times 10 \mathrm{~cm}^{3}$). The extracts were washed with brine $\left(10 \mathrm{~cm}^{3}\right)$, dried, and concentrated. The residue was purified by column chromatography on silica with hexane-AcOEt (4:1) as eluent to afford compound 5 c as an oil ($1.11 \mathrm{~g}, 89 \%$) (Found: $\mathrm{M}^{+}, 226.1196$. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}$ requires M, 226.1204); b.p. $131-139{ }^{\circ} \mathrm{C} / 10 \mathrm{mmHg}$; $[x]_{\mathrm{D}}^{25}-3.8^{\circ}$ (c 1.02); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 2950, 1740, 1150, 1045 and $920 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.33\left(1 \mathrm{H}, \mathrm{d}, J 8.5,7-\mathrm{H}^{\mathrm{a}}\right), 1.49(1 \mathrm{H}, \mathrm{dt}, J$ $\left.8.5,2,7-\mathrm{H}^{\mathrm{b}}\right), 2.73(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-$ or $4-\mathrm{H}), 3.08$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-$ or $1-\mathrm{H}), 3.08(1 \mathrm{H}, \mathrm{dt}, J 8,3,3-\mathrm{H}), 3.21(1 \mathrm{H}, \mathrm{t}, J 9$, $\left.8-\mathrm{H}^{\mathrm{a}}\right), 3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.44\left(1 \mathrm{H}, \mathrm{dd}, J 9,7,8-\mathrm{H}^{\mathrm{b}}\right), 3.59(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 4.55\left(2 \mathrm{H}, \mathrm{ABq}, J 7, \mathrm{OCH}_{2} \mathrm{O}\right), 6.13(1 \mathrm{H}, \mathrm{dd}, J 6,3,5$ - or $6-\mathrm{H})$ and $6.29(1 \mathrm{H}, \mathrm{dd}, J 6,3,6-$ or $5-\mathrm{H}) ; m / z(\mathrm{EI}) 226\left(\mathrm{M}^{+}\right)$, 211, 195, 129 and 99 .
(-)-(1R,4S)-3-endo-[(Methoxymethoxy)methyl]bicyclo-[2.2.1]hept-5-ene-2-endo-methanol $\mathbf{6 c}$--To a solution of ester $5 \mathrm{c}(1.17 \mathrm{~g}, 5.18 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(197 \mathrm{mg}, 5.18 \mathrm{mmol})$ portionwise. The mixture was stirred for 15 min , after which ice-water ($15 \mathrm{~cm}^{3}$) was carefully added. Most of the solvent was evaporated off and the aq. layer was extracted with diethyl ether ($3 \times 15 \mathrm{~cm}^{3}$). The extracts were washed with brine ($15 \mathrm{~cm}^{3}$), dried, and concentrated. The residue was purified by column chromatography [hexaneAcOEt (2:1)] on silica to give compound $\mathbf{6 c}$ as an oil (0.908 g , 89%) (Found: M^{+}, 198.1228. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}, 198.1255$); $[\alpha]_{\mathrm{D}}^{25}-0.93^{\circ}(c 0.51) ;[\alpha]_{\mathrm{D}}^{25}-23.6^{\circ}$ (c 1.11 , acetone); b.p. 162$170^{\circ} \mathrm{C} / 25 \mathrm{mmHg} ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3400,2950,1150,1100$ and $1040 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.38\left(1 \mathrm{H}, \mathrm{d}, J 8,7-\mathrm{H}^{\mathrm{a}}\right), 1.45(1 \mathrm{H}, \mathrm{dt}, J 8,1.7$, $7-\mathrm{H}^{\mathrm{b}}$), 2.45-2.63 ($2 \mathrm{H}, \mathrm{m}, 2$ - and $3-\mathrm{H}$), $2.86(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 1$ - and $4-\mathrm{H}), 3.11\left(1 \mathrm{H}, \mathrm{br}\right.$ s, OH , disappeared with $\mathrm{D}_{2} \mathrm{O}$), 3.31-3.51 (4 $\mathrm{H}, \mathrm{m}, 8-\mathrm{and} 11-\mathrm{H}_{2}$), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $4.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$ and 6.04-6.11 ($2 \mathrm{H}, \mathrm{m}, 5$ - and $6-\mathrm{H}) ; m / z$ (EI) $199\left(\mathrm{M}^{+}+1\right)$, 167, 101, 91 and 79 .
(-)-(3R,6R)-9-endo-[(Methoxymethoxy)methyl $]-4$-oxatricyclo[4.2.1.0 ${ }^{3.7}$]nonan- 2 -exo-ol 7.-To a solution of compound $6 \mathrm{c}(126 \mathrm{mg}, 0.64 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added MCPBA (80% purity; $276 \mathrm{mg}, 1.28 \mathrm{mmol}$) portionwise. The mixture was stirred at room temperature for 2.5 h , washed successively with 5% aq. sodium thiosulphate ($10 \mathrm{~cm}^{3}$) and saturated aq. sodium hydrogen carbonate $\left(10 \mathrm{~cm}^{3}\right)$, dried, and concentrated. The residue was purified by flash chromatography [hexane-AcOEt (1:1)] on silica to afford compound 7 ($80 \mathrm{mg}, 59 \%$) as needles (Found: C, 61.5 ; H, 8.3. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $\mathrm{C}, 61.66, \mathrm{H}, 8.47 \%$), m.p. $82-84^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}^{26}$ $-30.2^{\circ}(c 1.69) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3375,2900$ and 1340; $\delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 1.50\left(1 \mathrm{H}, \mathrm{br}\right.$ s, OH), 1.53 ($\left.1 \mathrm{H}, \mathrm{d}, J 10,8-\mathrm{H}^{2}\right), 1.99(1 \mathrm{H}$, d, $\left.J 10,8-\mathrm{H}^{\mathrm{b}}\right), 2.19(1 \mathrm{H}, \mathrm{br} \mathrm{s} 1-\mathrm{H}),, 2.26(1 \mathrm{H}$, dddd, $J 10,8,3.5$, $1,9-\mathrm{H}), 2.41$ (1 H , ddd, $J 10,5,4,6-\mathrm{H}$), 2.74 ($1 \mathrm{H}, \mathrm{t}, J 5,7-\mathrm{H}$), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.56 ($2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CH}_{2} \mathrm{O}$), $3.67(1 \mathrm{H}, \mathrm{dd}, J 6,4$, $\left.5-\mathrm{H}^{\mathrm{a}}\right), 3.7\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $2-\mathrm{H}$), $3.74\left(1 \mathrm{H}, \mathrm{d}, J 6,5-\mathrm{H}^{\mathrm{b}}\right), 4.00(1 \mathrm{H}, \mathrm{dd}, J$ $5,1,3-\mathrm{H})$ and $4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right) ; m / z(\mathrm{EI}) 214\left(\mathrm{M}^{+}\right), 169$, 152,95 and 93.
(-)-(3R,6R)-9-endo-[(Methoxymethoxy)methyl]-4-oxatricyclo[4.2.1.0 ${ }^{3,7}$]nonan-2-one $\mathbf{8}$.-To a suspension of PCC (239 $\mathrm{mg}, 1.1 \mathrm{mmol}$) and molecular sieves $4 \AA$ (powder, 100 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added a solution of alcohol 7 (74 $\mathrm{mg}, 0.35 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ in one portion and the mixture was stirred overnight. After being diluted with diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$, the reaction mixture was filtered with the aid
of a short plug of Florisil. The filtrate was concentrated and the residue was purified by column chromatography [hexaneAcOEt (2:1)] on silica to give compound 8 ($53 \mathrm{mg}, 72 \%$) (Found: $\mathrm{M}^{+}, 212.1091 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{M}, 212.1048$) as an oil, b.p. $102-104^{\circ} \mathrm{C} / 0.15 \mathrm{mmHg} ;[\alpha]_{\mathrm{D}}^{25}-112.3^{\circ}$ (c 1.30); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2950,2900,1760,1150$ and $1040 ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ $1.78\left(1 \mathrm{H}, \mathrm{dt}, J 11.5,1.5,8-\mathrm{H}^{\mathrm{a}}\right), 1.87\left(1 \mathrm{H}, \mathrm{dt}, J 11.5,1.5,8-\mathrm{H}^{\mathrm{b}}\right)$, 2.41 ($1 \mathrm{H}, \mathrm{ddt}, J 10,8,5,6-\mathrm{H}), 2.56(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.77(1 \mathrm{H}$, ddt, $J 10,2.5,2,9-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{dt}, J 5,1.5,7-\mathrm{H}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.45\left(1 \mathrm{H}, \mathrm{dd}, J 10,8,5-\mathrm{H}^{\mathrm{a}}\right), 3.48\left(1 \mathrm{H}, \mathrm{dd}, J 10,8,5-\mathrm{H}^{\mathrm{b}}\right), 3.88(2$ $\left.\mathrm{H}, \mathrm{d}, J 2.5, \mathrm{CH}_{2} \mathrm{O}\right), 3.90(1 \mathrm{H}, \mathrm{d}, J 5,3-\mathrm{H})$ and $4.60(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right) ; m / z(\mathrm{EI}) 212\left(\mathrm{M}^{+}\right), 194,181,167,93$ and 69.
(-)-(1R,4R)-5-endo-Hydroxymethyl-6-endo-[(methoxy-methoxy)methyl]bicyclo[2.2.1]heptan-2-one 9.--To a solution of the tricyclic ketone $8(260 \mathrm{mg}, 1.23 \mathrm{mmol})$ in dry THF (9 cm^{3})-dry $\mathrm{EtOH}\left(3.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added aluminium amalgam [prepared from aluminium foil (153 mg) and 5% mercury(II) chloride in THF]. The mixture was stirred vigorously at that temperature for 3 h , and was then filtered through a short pad of Celite and the solid residue was washed with AcOEt ($3 \times 10 \mathrm{~cm}^{3}$). The filtrate and washings were concentrated and the residue was purified by column chromatography with chloroform and then AcOEt as eluent to give compound 9 (240 $\mathrm{mg}, 91 \%$) (Found: $\mathrm{M}^{+}, 214.1218 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}$ requires M , 214.1204) as an oil, b.p. $121-125^{\circ} \mathrm{C} / 0.15 \mathrm{mmHg} ;[\alpha]_{\mathrm{D}}^{25}-5.0^{\circ}$ (c 1.90); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450,2950,1740,1110$ and 1040; $\delta_{\mathrm{H}^{-}}$ $(270 \mathrm{MHz}) 1.77\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}_{2}\right), 1.98\left(1 \mathrm{H}, \mathrm{dd}, J 18,4,3-\mathrm{H}^{\mathrm{a}}\right)$, 2.08 ($1 \mathrm{H}, \mathrm{dd}, J 18,3,3-\mathrm{H}^{b}$), 2.52-2.67 ($3 \mathrm{H}, \mathrm{m}, 4-$, 5- and $6-\mathrm{H}$), $2.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 3.02(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.52$ $\left(2 \mathrm{H}, \mathrm{d}, J 7, \mathrm{HOCH}_{2}\right), 3.6(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HO}), 3.85(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHHO})$ and $4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right) ; m / z(\mathrm{EI}) 214\left(\mathrm{M}^{+}\right), 169,93$, 79 and 69.

(3R/3S,4aS,7R,7aS)-7-[(Methoxymethoxy)methyl]-

1,3,4,4a,7,7a-hexahydrocyclopenta[c] pyran-3-ol 10.-A solution of compound 9 ($270 \mathrm{mg}, 1.26 \mathrm{mmol}$) in dry, degassed $\mathrm{MeCN}\left(500 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was irradiated with a 200 W lowpressure Hg lamp through a quartz filter for 4 h . To the mixture at ambient temperature was added conc. $\mathrm{HCl}(1$ drop) and the mixture was stirred overnight. After concentration at reduced pressure, the residue was passed through a short plug of silica [hexane-AcOEt (2:1)] to afford the crude oily product 10 $(\sim 0.3 \mathrm{~g})$ as a $3: 2$ anomeric mixture, judged by ${ }^{1} \mathrm{H}$ NMR spectroscopy; $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.43(0.4 \mathrm{H}$, ddd, $J 14,10,7,4-\mathrm{H})$, $1.77(0.6 \mathrm{H}$, ddd, $J 14,8,7,4-\mathrm{H}), 1.90(0.6 \mathrm{H}$, ddd, $J 14,4,3.5$, $4-\mathrm{H}$), 2.08 (0.4 H , ddd, $J 14,6,4,4-\mathrm{H}$), $2.48-2.56(1.6 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-$ and 4 a - or $7-\mathrm{H}), 2.78(0.4 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}$ - or $7-\mathrm{H}), 2.94(0.4 \mathrm{H}, \mathrm{d}, J 5$, $\mathrm{OH}), 2.99-3.10(1 \mathrm{H}, \mathrm{m}, 7-$ or $4 \mathrm{a}-\mathrm{H}), 3.04(0.6 \mathrm{H}, \mathrm{d}, J 5, \mathrm{OH}), 3.37$ ($1.2 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.38(1.8 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.50-3.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.68$ $(0.4 \mathrm{H}, \mathrm{dd}, J 12,8,1-\mathrm{H}), 3.72(0.6 \mathrm{H}, \mathrm{dd}, J 12,6,1-\mathrm{H}), 3.93(0.6 \mathrm{H}$, dd, $J 12,5,1-\mathrm{H}), 4.10(0.4 \mathrm{H}, \mathrm{dd}, J 12,8,1-\mathrm{H}), 4.63(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.02(0.4 \mathrm{H}, \mathrm{dt}, J 7,5,3-\mathrm{H}), 5.67-5.75(1.6 \mathrm{H}, \mathrm{m}, \mathrm{CH}=)$ and $5.84(0.4 \mathrm{H}, \mathrm{dt}, J 5.5,2, \mathrm{CH}=)$. The crude hemiacetal was used for the next step without further purification.
(-)-(4aS,7R,7aS)-7-[(Methoxymethoxy)methyl $]-4,4 \mathrm{a}, 7,7 \mathrm{a}-$ tetrahydrocyclopenta [c] pyran-3(1H)-one 11.-To a solution of the acetal 10 in acetone $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added dropwise Jones' reagent (10 drops). After the mixture had been stirred for 1 h , propan-2-ol was added to the mixture until the orange colour changed to green. After being diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ the mixture was evaporated and the aq. layer was extracted with diethyl ether ($4 \times 20 \mathrm{~cm}^{3}$). The extracts were washed successively with dil. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and brine ($30 \mathrm{~cm}^{3}$), dried, and concentrated. The residue was purified by flash chromatography [hexane-AcOEt (1:1)] to give compound $\mathbf{1 1}$ (170 mg , 64%) as needles, m.p. $42-44{ }^{\circ} \mathrm{C}$ (from hexane) (Found: C, 62.3;
$\mathrm{H}, 7.6 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.25 ; \mathrm{H}, 7.60 \%$) $[\alpha]_{\mathrm{D}}^{25}-17.3^{\circ}(c$ 2.10); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2895,1730,1230,1100$ and $1040 ; \delta_{\mathbf{H}}(270$ $\mathrm{MHz}) 2.42(1 \mathrm{H}, \mathrm{dd}, J 15,7,4-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{dd}, J 15,7,4-\mathrm{H}), 2.85$ ($1 \mathrm{H}, \mathrm{ddt}, J 9,7,5,7 \mathrm{a}-\mathrm{H}), 3.3(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-$ or $7-\mathrm{H}), 3.38(3 \mathrm{H}, \mathrm{s}$, Me), $3.4(1 \mathrm{H}, \mathrm{m}, 7$ - or $4 \mathrm{a}-\mathrm{H}), 3.60(1 \mathrm{H}$, dd, $J 10,5.5, \mathrm{OCH} \mathrm{H})$, $3.66(1 \mathrm{H}, \mathrm{dd}, J 10,6, \mathrm{OCH} H), 4.29(1 \mathrm{H}, \mathrm{dd}, J 12,5,1-\mathrm{H}), 4.38$ $(1 \mathrm{H}, \mathrm{dd}, J 12,7,1-\mathrm{H}), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.63(1 \mathrm{H}, \mathrm{dt}, J 5.5$, 2, $\mathrm{CH}=)$ and $5.68(1 \mathrm{H}, \mathrm{dt}, J 5.5,2, \mathrm{CH}=) ; m / z(\mathrm{EI}) 213$ $\left(\mathbf{M}^{+}+1\right), 150,91,79,77$ and 74 .
(-)-(4aS,7R,7aS)-7-Hydroxymethyl-4,4a,7,7a-tetrahydrocyclopenta[c] pyran- $3(1 \mathrm{H})$-one 12 .-A mixture of compound 11 $(85 \mathrm{mg}, 0.4 \mathrm{mmol})$ and PPTS $(200 \mathrm{mg}, 8 \mathrm{mmol})$ in $\mathrm{Bu}^{t} \mathrm{OH}(4$ cm^{3}) was heated under reflux for 8 h . The mixture was concentrated and the residue was purified on silica [hexane$\mathrm{AcOEt}(1: 2)$] to give compound $12(58 \mathrm{mg}, 86 \%)$ as needles, m.p. $78-80^{\circ} \mathrm{C}$ (from diethyl ether-hexane) (Found: C, 64.3; H, 7.2. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $\mathrm{C}, 64.27 ; \mathrm{H}, 7.19 \%$); $[\alpha]_{\mathrm{D}}^{25}-3.0^{\circ}$ (c 1.22); $v_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1} 3520,2920,1730,1290$ and $1250 ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ $1.65(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.45(1 \mathrm{H}, \mathrm{dd}, J 15,6.5,4-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{dd}, J$ $15,6.8,4-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{ddt}, J 9.5,6.5,5,7 \mathrm{a}-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-$ or $7-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{m}, 7$ - or $4 \mathrm{a}-\mathrm{H}), 3.70-3.88\left(2 \mathrm{H}, \mathrm{br}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right)$, $4.33(1 \mathrm{H}, \mathrm{dd}, J 12,5,1-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{dd}, J 12,6.5,1-\mathrm{H})$ and $5.64-5.72$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=$).
(+)-\{(4aS,7R,7aS)-3-Oxo-1,3,4,4a,7,7a-hexahydrocyclopenta[c] pyran-7-yl $\}$ methyl Toluene-p-sulphonate 13.-To a solution of compound 12 ($33 \mathrm{mg}, 0.2 \mathrm{mmol}$) in pyridine (0.5 cm^{3}) was added toluene- p-sulphonyl chloride ($121 \mathrm{mg}, 0.6$ mmol) and a pinch of 4 -(dimethylamino)pyridine and the mixture was stirred overnight before being poured into 1 mol dm^{-3} hydrochloric acid $\left(10 \mathrm{~cm}^{3}\right)$, and the aq. layer was extracted with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The extracts were washed with brine $\left(10 \mathrm{~cm}^{3}\right)$, dried, and concentrated. The residue was purified by column chromatography on silica [hexane-AcOEt (1:1)] to give compound $13\left(60 \mathrm{mg}, 93 \%\right.$) as needles, m.p. $127^{\circ} \mathrm{C}$ (from hexane- CHCl_{3}) (Found: $\mathrm{C}, 59.3 ; \mathrm{H}, 5.7 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 59.62 ; \mathrm{H}, 5.63 \%$); $[x]_{\mathrm{D}}^{25}+19.9^{\circ}(c 2.73)$; $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730,1175,1105$ and $970 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.43(1 \mathrm{H}$, dd, $J 15,5,4-\mathrm{H}), 2.47$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.71(1 \mathrm{H}, \mathrm{dd}, J 15,7,4-\mathrm{H})$, $2.86(1 \mathrm{H}$, apparent sep., $J 5,7 \mathrm{a}-\mathrm{H}), 3.31-3.49(2 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{and} 7-$ $\mathrm{H}), 4.08\left(1 \mathrm{H}, \mathrm{dd}, J 9,9, \mathrm{CH} \mathrm{HO}_{3} \mathrm{~S}\right), 4.16(1 \mathrm{H}, \mathrm{dd}, J 9,5.5$, $\left.\mathrm{CH} H \mathrm{SO}_{3}\right), 4.17(1 \mathrm{H}, \mathrm{dd}, J 12,5.5,1-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{dd}, J 12,5,1-$ $\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dt}, J 5.5,2, \mathrm{CH}=), 5.65(1 \mathrm{H}, \mathrm{dt}, J 5.5,2, \mathrm{CH}=), 7.37$ $(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH})$ and $7.80(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; m / z(\mathrm{EI}) 322\left(\mathrm{M}^{+}\right)$, 155,150 and 91.
(-)-5,6-Didehydroboschnialactone 14.-A mixture of compound $13(100 \mathrm{mg}, 0.3 \mathrm{mmol})$, zinc (605 mg), and sodium iodide ($233 \mathrm{mg}, 1.55 \mathrm{mmol}$) in 1,2-dimethoxyethane ($5 \mathrm{~cm}^{3}$) was heated at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with diethyl ether (10 cm^{3}) and filtered through a short pad of Celite, and the solid filter was washed with diethyl ether ($4 \times 10 \mathrm{~cm}^{3}$). The filtrate and washings were washed with brine $\left(10 \mathrm{~cm}^{3}\right)$, dried, and concentrated at reduced pressure ($\sim 30 \mathrm{mmHg}$) below $10^{\circ} \mathrm{C}$. The residue was purified by column chromatography [hexaneAcOEt (1:1)] on silica to give compound 14 (47 mg , quantitative) as needles, m.p. $90-91^{\circ} \mathrm{C}$ (from diethyl ether-pentane) (Found: C, 71.3; $\mathrm{H}, 7.9$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$: C, $71.02 ; \mathrm{H}, 7.95 \%$), identified by direct comparison with an authentic sample ${ }^{11 c}$ provided by Professor Vandewalle; $[\alpha]_{D}^{25}-19.8^{\circ}(c 0.77)$.

Boschnialactone 2.-A mixture of compound $14(20 \mathrm{mg}, 0.13$ mmol) and $5 \% \mathrm{Pt}$ on alumina (0.2 g) in $\mathrm{Bu} \mathrm{OH}^{t}\left(2.5 \mathrm{~cm}^{3}\right)$ was degassed and covered with hydrogen. The mixture was stirred vigorously at ambient temperature for 5 h , then was filtered through a short pad of Celite, and the solid filter was washed with $\operatorname{AcOEt}\left(10 \mathrm{~cm}^{3}\right)$. The combined filtrate and washings were
concentrated and the residue was purified by column chromatography [hexane-AcOEt (1:1)] on silica to afford compound 2 ($17 \mathrm{mg}, 85 \%$) as an oil, identified by comparison with an authentic sample by its IR and ${ }^{1} \mathrm{H}$ NMR spectra. B.p. 109 $115^{\circ} \mathrm{C} / 13 \mathrm{mmHg} ;[\alpha]_{\mathrm{D}}^{25}-21.3^{\circ}(c 0.34)\left\{\right.$ lit.,$^{10}[\alpha]_{\mathrm{D}}^{21}-18.2^{\circ}(c$ $\left.\left.2.70, \mathrm{CHCl}_{3}\right)\right\}$.
(+)-(1S,4R)-5-endo-(4-Chlorobenzenesulphonylamino)-6-endo-[(methoxymethoxy)methyl]bicyclo[2.2.1]hept-2-ene 18.To a solution of compound $5 \mathrm{c}(262 \mathrm{mg}, 1.16 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added $0.25 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{NaOH}\left(9.3 \mathrm{~cm}^{3}, 2.32\right.$ mmol) and the mixture was stirred overnight before being acidified with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ to pH 4 and the aq. layer was extracted with $\mathrm{CHCl}_{3}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine $\left(10 \mathrm{~cm}^{3}\right)$, dried, and concentrated.

The crude acid $16(246 \mathrm{mg})$ was dissolved in acetone $\left(10 \mathrm{~cm}^{3}\right)$, and the solution was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{Et}_{3} \mathrm{~N}$ $\left(0.242 \mathrm{~cm}^{3}\right)$ and then with ethyl chloroformate $\left(0.167 \mathrm{~cm}^{3}\right)$. After the mixture had been stirred for 40 min , aq. $\mathrm{NaN}_{3}(151 \mathrm{mg}$, 2.32 mmol in $4 \mathrm{~cm}^{3}$) was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After dilution with water $\left(15 \mathrm{~cm}^{3}\right)$, the aq. layer was separated and extracted with $\mathrm{CHCl}_{3}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The extracts were washed with brine $\left(10 \mathrm{~cm}^{3}\right)$, dried, and concentrated.

The crude azido ether was dissolved in AcOH -water ($4 \mathrm{~cm}^{3}$; $3: 1$) and the mixture was heated under reflux for 1 h . The aq. solution was partitioned between diethyl ether ($10 \mathrm{~cm}^{3}$) and 1 $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$, and the layers were separated. The organic layer was extracted with $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The pH of the combined aq. layers was adjusted to 10 by the addition of 10% aq. NaOH . The alkaline solution was extracted with $\mathrm{CHCl}_{3}\left(4 \times 5 \mathrm{~cm}^{3}\right)$, and the extracts were dried and concentrated.

The crude amino ether $17(170 \mathrm{mg})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4 \mathrm{~cm}^{3}\right)$, and the solution was treated with $\mathrm{Et}_{3} \mathrm{~N}\left(0.4 \mathrm{~cm}^{3}\right)$ and cooled to $0^{\circ} \mathrm{C}$. To the solution was added 4-chlorobenzenesulphonyl chloride ($245 \mathrm{mg}, 1.16 \mathrm{mmol}$) and the mixture was stirred at room temperature overnight, washed with brine (10 cm^{3}), dried, and concentrated. The residue was purified by chromatography [hexane-AcOEt (6:1)] on silica to give compound $18(266 \mathrm{mg}, 64 \%)$ as needles, m.p. $121-123{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: $\mathrm{C}, 54.0 ; \mathrm{H}, 5.6 ; \mathrm{N}, 3.6 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 53.70 ; \mathrm{H}, 5.63 ; \mathrm{N}, 3.91 \%$); $[\alpha]_{\mathrm{D}}^{24}+17.8^{\circ}$ (c 1.0); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3212,2973,1352,1159,1110,1040,822$ and $754 ;$ $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 1.26\left(1 \mathrm{H}, \mathrm{d}, J 9,7-\mathrm{H}^{\mathrm{a}}\right), 1.47\left(1 \mathrm{H}, \mathrm{dt}, J 9,2,7-\mathrm{H}^{\mathrm{b}}\right)$, $2.46(1 \mathrm{H}, \mathrm{ddt}, J 9,7.5,3,6-\mathrm{H}), 2.83-2.86(2 \mathrm{H}, \mathrm{br}, 1-$ and $4-\mathrm{H})$, $3.21(1 \mathrm{H}, \mathrm{A}$ of ABX, $J 10,7.5, \mathrm{OCH} \mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{B}$ of ABX, J $10,7.5, \mathrm{OCH} H$), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.89 (1 H , ddd, $J 9,8,3.5$, $5-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{d}, J 6, \mathrm{OCH} \mathrm{HO}), 4.55(1 \mathrm{H}, \mathrm{d}, J 6, \mathrm{OCH} H)$, $4.71(1 \mathrm{H}, \mathrm{brd}, J 8, \mathrm{NH}), 6.00(1 \mathrm{H}, \mathrm{dd}, J 6,3, \mathrm{CH}=), 6.26(1 \mathrm{H}$, $\mathrm{dd}, J 6,3, \mathrm{CH}=), 7.51(2 \mathrm{H}, \mathrm{dt}, J 8.5,2$, ArH $)$ and $7.82(2 \mathrm{H}, \mathrm{dt}, J$ 8.5, 2, ArH); $m / z(E I) 357\left(\mathrm{M}^{+}\right)$.
(+)-\{(1S,4R)-3-endo-(4-Chlorobenzenesulphonylamino)bi-cyclo[2.2.1]hept-5-en-2-yl\}methanol 19.-To a suspension of compound 18 ($367 \mathrm{mg}, 1.03 \mathrm{mmol}$) in benzenethiol $\left(2.5 \mathrm{~cm}^{3}\right)$ was added dropwise boron trifluoride-diethyl ether complex (0.5 cm^{3}) via syringe. The mixture was stirred at room temperature for 4 h . After dissolution of the precipitate with a minimal amount of CHCl_{3} the solution was directly charged onto a silica column. The eluents with hexane-AcOEt (1:1) were collected and concentrated to give compound 19 (322 mg , quant.) as needles, m.p. $122-123^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 53.7; $\mathrm{H}, 5.2 ; \mathrm{N}, 4.5 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 53.59 ; \mathrm{H}, 5.14 ; \mathrm{N}$, $4.46 \%) ;[\alpha]_{\mathrm{D}}^{25}+55.2^{\circ}(c 1.43) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3123,2891,1321$, 1156,1091 and $756 ; \delta_{\mathbf{H}}(270 \mathrm{MHz}) 1.27\left(1 \mathrm{H}, \mathrm{d}, J 9,7-\mathrm{H}^{\mathrm{a}}\right), 1.45(1$ $\left.\mathrm{H}, \mathrm{dt}, J 9,2,7-\mathrm{H}^{\mathrm{b}}\right), 1.95(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.43(1 \mathrm{H}, \mathrm{ddt}, J 8.8,7,3,3-$ H), $2.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-$ or $4-\mathrm{H}), 2.83(1 \mathrm{H}$, br s, $4-$ or $1-\mathrm{H}), 3.43-3.45$ $\left(2 \mathrm{H}, \mathrm{br}, \mathrm{HOCH}_{2}\right), 3.90(1 \mathrm{H}, \mathrm{dt}, J 8.8,4,2-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{d}, J 8.8$,

NH), 6.01 ($1 \mathrm{H}, \mathrm{dd}, J 6,3, \mathrm{CH}=), 6.29(1 \mathrm{H}, \mathrm{dd}, J 6,3, \mathrm{CH}=), 7.52$ ($2 \mathrm{H}, \mathrm{dt}, J 9,2, \mathrm{ArH}$) and $7.84(2 \mathrm{H}, \mathrm{dt}, J 9,2, \mathrm{ArH}$); $m /=$ (EI) 314 $\left(\mathbf{M}^{+}+1\right), 313\left(\mathbf{M}^{+}\right), 249,177,175$ and 111.
(+)-(1S,4R)-3-endo-(4-Chlorobenzenesulphonylamino)bicyclo[2.2.1] hept-5-ene-2-endo- and-2-exo-carbaldehyde $\mathbf{2 0}$ and 21.-To a suspension of PCC ($400 \mathrm{mg}, 1.85 \mathrm{mmol}$), molecular sieves $4 \AA$ (powder, 310 mg), and $\mathrm{NaOAc}(30 \mathrm{mg})$ in dry $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of the alcohol $\mathbf{1 9}$ (193 $\mathrm{mg}, 0.62 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ in one portion. After being stirred at that temp. for 1 h , the mixture was treated with diethyl ether ($55 \mathrm{~cm}^{3}$), stirred for 5 min , and filtered through a short plug of Florisil. The solid filter was washed with diethyl ether ($2 \times 50 \mathrm{~cm}^{3}$) and the combined filtrate and washings were concentrated. The residue was filtered with hexane-AcOEt ($1: 1$) with the aid of a short pad of Celite. The filtrate was concentrated to give a mixture of compounds 20 and 21 (163 $\mathrm{mg}, 85 \%$), as a solid, in the ratio $6: 1$. The isomer ratio ($\mathbf{2 0}: \mathbf{2 1}$ 6:1) was determined by the integration of the aldehydic protons ($\delta 9.46$ and 9.67) in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Compound 20 as needles, m.p. $141-143{ }^{\circ} \mathrm{C}$ (from hexane) (Found: C, 54.2; H, 4.3; N, 4.5. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}$ requires C , $53.93 ; \mathrm{H}, 4.53 ; \mathrm{N}, 4.49 \%$); $[x]_{\mathrm{D}}^{24}+24.2^{\circ}(c 1.07) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3245,2984,1711,1478,1349,1165,1085$ and $755 ; \delta_{\mathrm{H}}(270 \mathrm{MHz})$ $1.32\left(1 \mathrm{H}, \mathrm{d}, J 9,7-\mathrm{H}^{\mathrm{a}}\right), 1.50\left(1 \mathrm{H}, \mathrm{dt}, J 9,2,7-\mathrm{H}^{\mathrm{b}}\right), 2.97(1 \mathrm{H}$, br s, 1- or $4-\mathrm{H}), 3.11(1 \mathrm{H}$, ddd, $J 9,3.5,2,2-\mathrm{H}), 3.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, 4 - or $1-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{dt}, J 9,3.5,3-\mathrm{H}), 5.35(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9, \mathrm{NH})$, 6.12 ($1 \mathrm{H}, \mathrm{dd}, J 5.5,3, \mathrm{CH}=), 6.31(1 \mathrm{H}, \mathrm{dd}, J 5.5,3, \mathrm{CH}=), 7.50$ ($2 \mathrm{H}, \mathrm{dt}, J 9,2, \mathrm{ArH}$), $7.79(2 \mathrm{H}, \mathrm{dt}, J 9,2, \mathrm{ArH}$) and $9.46(1 \mathrm{H}, \mathrm{d}$, $J 2, \mathrm{CHO}) ; m_{i} /=(\mathrm{EI}) 312\left(\mathrm{M}^{+}+1\right), 311\left(\mathrm{M}^{+}\right), 248,246,218$, 177, 175, 113 and 111.
Compound 21 as prisms, m.p. $116{ }^{\circ} \mathrm{C}$ (from hexane) (Found: C, 53.9, H, 4.6; N, $4.1_{\%}^{\circ}$); $[x]_{\mathrm{D}}^{24}+39.9(c 0.93) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3239, 2979, 1703, 1444, 1332, 1165, 1086, 1013 and $754 ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 1.34\left(1 \mathrm{H}, \mathrm{d}, J 9.5,7-\mathrm{H}^{\mathrm{a}}\right), 1.44\left(1 \mathrm{H}, \mathrm{dq}, J 9.5,2,7-\mathrm{H}^{\mathrm{b}}\right)$, $2.13(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-$ or $4-\mathrm{H}), 3.05(1 \mathrm{H}, \mathrm{br}, 4-$ or $1-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{dt}, J 9.5,3.5,3-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 6.14$ ($1 \mathrm{H}, \mathrm{dd}, J 5.5,3, \mathrm{CH}=$), $6.45(1 \mathrm{H}, \mathrm{dd}, J 5.5,3, \mathrm{CH}=), 7.50(2 \mathrm{H}$, $\mathrm{dt}, J 9,2, \mathrm{ArH}), 7.80(2 \mathrm{H}, \mathrm{dt}, J 9,2, \mathrm{ArH})$ and $9.67(1 \mathrm{H}, \mathrm{d}, J 1$, CHO); $m /=312\left(\mathrm{M}^{+}+1\right), 311\left(\mathrm{M}^{+}\right), 282,248,246,177,175$ and 111.

Epimerisation of Compound 20.-To a silica column (diameter 1.5 cm ; Merck $9385 ; 5 \mathrm{~g}$) packed with hexane-AcOEt (4:1) was charged and adsorbed a solution of a mixture of aldehydes 20 and 21 ($38 \mathrm{mg} ; 6: 1$) in $\mathrm{CHCl}_{3}\left(0.5 \mathrm{~cm}^{3}\right.$). Next day the column was eluted with that solvent and the eluents were concentrated to give compounds 20 and 21 ($37 \mathrm{mg}, 97 \%$) in the ratio $1: 12$. Recrystallisation from hexane afforded the pure 2-exo-aldehyde 21 ($28 \mathrm{mg}, 74 \%$).
(+)-(5Z)-6-\{(1S,4R)-3-endo-(4-Chloropheny/sulphonyl-
 3.-A suspension of $\mathrm{NaH}(48 \mathrm{mg}, 2.0 \mathrm{mmol}$, prewashed with dry diethyl ether) and dimethyl sulphoxide (DMSO) $\left(1.5 \mathrm{~cm}^{3}\right)$ was heated at $60^{\circ} \mathrm{C}$ for 45 min . To the solution cooled to room temp. was added (4-carboxybutyl)triphenylphosphonium bromide ($443 \mathrm{mg}, 1 \mathrm{mmol}$) and the mixture was stirred for 0.5 h . To the orange coloured solution was added a solution of compound 20 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) in DMSO ($0.5 \mathrm{~cm}^{3}$) via syringe. After being stirred at $50{ }^{\circ} \mathrm{C}$ for 5 h the mixture was partitioned between $\operatorname{AcOEt}\left(5 \mathrm{~cm}^{3}\right)$ and $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$. The aq. layer $(\mathrm{pH} 4)$ was extracted with $\mathrm{CHCl}_{3}\left(3 \times 10 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were dried and concentrated. The crude product was dissolved in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ and the solution was treated with excess of ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$. After usual work-up, the residue was purified by chromatography [hexane$\mathrm{AcOEt}(6: 1)]$ on silica to give the methyl ester derivatives of
acids 3 and $22(48 \mathrm{mg}, 90 \%)$ in the ratio 5.5:1. The ratio was determined by integration of olefinic ($5-\mathrm{H}$) signals in the ${ }^{1} \mathrm{H}$ NMR spectrum [$\delta 5.42(\mathrm{dt}, J 10.8,6.8)$ and $5.30(\mathrm{dt}, J 15$, 7.2)].

The methyl esters were treated with $\mathrm{LiOH}(6 \mathrm{mg}, 0.26 \mathrm{mmol})$ in THF-water ($4 \mathrm{~cm}^{3} ; 3: 1$) and the mixture was stirred at room temp. for 48 h . After acidification with dil. HCl usual work-up gave the acids $\mathbf{3}$ and 22. A solution of the crude acids $\mathbf{3}$ and 22 was treated with cyclohexylamine ($35 \mathrm{mg}, 0.35 \mathrm{mmol}$) in acetone $\left(5 \mathrm{~cm}^{3}\right)$ at room temp. for 3 h . The precipitate was collected, and crystallised from acetone to give the cyclohexylamine salt of acid 3 which was then acidified with conc. HCl to give the free acid $3\left(26 \mathrm{mg}, 51^{\%}\right.$) (isomeric purity 93%) as an oil, $[\alpha]_{\mathrm{D}}^{24}$ $+100.8^{\prime \prime}(c$ 1.73). The spectroscopic data were in good agreement with those reported previously. ${ }^{9}$

Wittig-Horner Condensation of Compound $\mathbf{2 0}$ by the Use of Bu'OK as Base.-To a suspension of (4-carboxybutyl)triphenylphosphonium bromide ($214 \mathrm{mg}, 0.48 \mathrm{mmol}$) in dry THF ($20 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}^{\text {t }} \mathrm{OK}$ ($108 \mathrm{mg}, 0.96 \mathrm{mmol}$) and the mixture was stirred at room temp. for 0.5 h . To the orange coloured solution was added a solution of compound 20 (30 $\mathrm{mg}, 0.096 \mathrm{mmol}$) in dry THF ($20 \mathrm{~cm}^{3}$) during 5 min . The mixture was then stirred for 4.5 h and treated with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ HCl to pH 2 2. Most of the THF was removed under reduced pressure, and the aq. layer was extracted with $\mathrm{CHCl}_{3}(3 \times 20$ cm^{3}). The combined extracts were washed with brine, dried, and concentrated. The residue was dissolved in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$. After usual work-up, the residue was purified by chromatography [hexane- AcOEt (6:1)] to give the methyl esters ($48 \mathrm{mg}, 100 \%$) in the ratio $1: 5.9$.
(-)-(5Z)-6-\{(1S,4R)-3'-endo-(4-Chlorophenylsulphonyl-amino)bicyclo[2.2.1]hept-5'-en-2'-exo-yl\}hex-5-enoic Acid 4.By using the same method as in the preparation described above, treatment of compound 21 ($54 \mathrm{mg}, 0.17 \mathrm{mmol}$) with Bu'OK ($216 \mathrm{mg}, 1.93 \mathrm{mmol}$) and (4-carboxybutyl)triphenylphosphonium bromide ($428 \mathrm{mg}, 0.97 \mathrm{mmol}$) in dry THF (10 cm^{3}) gave compounds (-)-4 and $23(58 \mathrm{mg}, 86 \%$) as a mixture of geometrical isomers, in the ratio $14: 1$, which was determined by the integration of the $5-$ and $6-\mathrm{H}$ (acid chain) protons of its methyl ester derivatives in the ${ }^{1} \mathrm{H}$ NMR spectrum [$\delta 6.08$ (2 H , t) and 5.82, 6.39 (each 1 H , each dd)]. The mixture was treated with cyclohexylamine, followed by recrystallisation from acetone, to give the almost pure amine salt of acid (-)-4, m.p. $113-115^{\circ} \mathrm{C}$. Treatment of the salt with conc. HCl afforded free acid (-)-4 ($29 \mathrm{mg}, 43^{\circ}$) as an oil, $[x]_{D}^{24}-40.5^{\circ}$ (c 0.98). The spectroscopic data were in good agreement with those reported previously. ${ }^{9}$

Acknowledgements

We are indebted to Professor F. Murai (Aichi Medical University) for providing a sample of natural boschnialactone and Professor M. Vandewalle (State University of Ghent) for supplying a sample of didehydroboschnialactone. This work was partially supported by the Yamada Science Foundation, to which we are grateful.

References

1 T.-L. Ho, Carbocycle Construction in Terpene Synthesis, VCH. New York. 1988. pp. 374-381; M. J. Taschner, in Organic Synthesis: Theory and Applications. ed. T. Hudlicky, JAI, Connecticut. 1989. vol. 1. pp. 1-101.
2 K. Furuta. S. Hayashi, Y. Miwa and H. Yamamoto, Tetrahedron Lélt.. 1987, 28. 5841: M. Narisada, M. Ohtani, F. Watanabe, K. Uchida. H. Arita. M. Doteuchi, K. Hanasaki, H. Kakushi, K. Ohtani and S. Hara, J. Med. Chem.. 1988. 31. 1847; N. Hamanaka, T. Seko.
T. Miyazaki, M. Naka, K. Furuta and H. Yamamoto, Tetrahedron Lett., 1989, 30, 2399: M. Murata, S. Ikoma and K. Achiwa, Chem. Pharm. Bull.. 1990. 38. 2329: M. J. Martinelli, J. Org. Chem., 1990, 55. 5065: R. G. Garland. M. Miyano. D. Pireh. M. Clare. P. M. Finnegan and L. Swenton, J. Org. Cherr., 1990, 55, 5854.
3 F. Lieb. U. Niewöhner and D. Wendish, Liehigs Ann. Chem., 1987, 607.
4 G. Jones, R. A. Raphael and S. Wright. J. Chem. Soc.. Perkin Trans. I. 1974. 1676.

5 K. P. Lok. I. J. Jakovac and J. B. Jones. J. Am. Chem. Soc.. 1985, 107, 2521.

6 R. A. Aitken and J. Gopal, Tetrahedron: Asymmetry, 1990, 1, 517.
7 Y. Arai. M. Matsui and T. Koizumi, J. Chem. Soc., Perkin Trans. I, 1990, 1233.
8 Preliminary communication, Y. Arai, S. Kawanami and T. Koizumi, Chem. Le'tt.. 1990. 1585
9 Ger. Pat. 3720760,1989 (Chem. Ahstr., 1989, 111, 133793 t).
10 T. Sakan, F. Murai, Y. Hayashi, Y. Honda, T. Shono, M. Nakajima and M. Kato, Tetrahedron. 1967, 23, 4635.
11 (a) K. Sisido, T. Kageyama, H. Mera and K. Utimoto, Tetrahedron I.ett. 1967, 1553; (b) M. Demuth and K. Schaffner, Angew: Chem., Int. Ed. Eng/.. 1982, 21. 820; (c) P. Callant, P. Storme, E. Van der Fycken and M. Vandewalle. Tetrahedron Lett., 1983, 24, 5797; (d) J.-C. Caille. B. Tabyaoui and R. Guilard, Synth. Commun., 1985. 15. 669: B. Hanquet. B. Tabyaoui. J.-C. Caille. M. Farnier and R. Guilard. Cim. J. Chem., 1990. 68. 620; (e) T.-F. Wang and C.-F. Yang. J. Chem. Ser.. Chem. Commum., 1989. 1876.

12 Ref. 11c: J. Meinwald and R. A. Chapman, J. Am. Chem. Soc., 1968, 90, 3218; K. Furuichi, K. Abe and T. Miwa, Tetruhedron Lett.. 1974, 3685: E. Van der Eycken, A. De Bruyn, J. Van der Eycken, P. Callant and M. Vandewalle, Tetrahedron, 1986, 42, 5385.
13 A. Ichihara, N. Nio, Y. Terayama, R. Kimura and S. Sakamura, Tetrahedron Le't.., 1979, 3731; ref. 3.
14 J. Herscovici, M.-J. Egron and K. Antonakis, J. Chem. Soc.., Perkin Trans. I. 1982. 1967.
15 J. Auerbach and S. M. Weinreb. J. Chem. Soc.. Chem. Commun., 1974, 298: A. I. Meyers, J. L. Durandetta and R. Munavu, J. Org. Chem., 1975, 40, 2025.
16 H. Monti, G. Léandri, M. Kros-Ringuet and C. Corriol, Synth. Commun., 1983, 13, 1021.
17 G. R. Kieczykowski and R. H. Schlessinger, J. Am. Chem. Soc.. 1978, 100. 1938: J. Org. Chem.. 1979. 44. 1661.

18 Y. Fujimoto and T. Tatsuno, Tetrahedron Lett., 1976, 3325.
19 B. P. Mundy and J. J. Theodore, J. Am. Chem. Soc., 1980, 102, 2005.

20 S. Nishimura, F. Mochizuki and S. Kobayakawa, Bull. Chem. Soc., Jpn. 1970. 43, 1919; S. Nishimura, H. Sakamoto and T. Ozawa, Chem. Lett., 1973, 855.

Paper 1/03260G
Received 1st July 1991
Accepted 8th July 1991

